Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Second-sphere coordination in anion binding: cis-diazidobis(ethylene-diamine- $\kappa^{2} N, N^{\prime}$)cobalt(III) picrate

Raj Pal Sharma, ${ }^{\text {a* }}$ Rajni Sharma, ${ }^{\text {a }}$ Ritu Bala ${ }^{\text {a }}$ and Andrew D. Bond ${ }^{\text {b* }}$
${ }^{\text {a }}$ Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India, and ${ }^{\text {b }}$ Department of Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
Correspondence e-mail: rpsharmapu@yahoo.co.in, adb@chem.sdu.dk

Received 30 March 2005
Accepted 18 April 2005
Online 13 May 2005
In the title compound, $\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)$, the cations share $\mathrm{NH}_{2} \cdots \mathrm{NH}_{2}$ edges with picrate anions via second-sphere $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

We are currently engaged in studies to explore cobalt(III) complexes as potential anion receptors and have previously reported the crystal structures of some cis-diazidobis(ethylenediamine)cobalt(III) salts (Sharma et al., 2003). The [cis$\left.\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{+}$cation (en is ethylenediamine) has also been characterized as a nitrate salt (Padmanabhan et al., 1968; Kastner et al., 1989). In continuation of our interest in this class of compounds, we describe here the synthesis and crystal structure of the title complex salt, $\left[\right.$ cis $\left.-\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{en})_{2}\right]$ $\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)$, (I) (Fig. 1).

(I)

The cation and anion in (I) are segregated into layers lying approximately in the (004) planes. The $\left[c i s-\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{+}$ cations form bilayers, into which the azide ligands interdigitate (Fig. 2). Within these bilayers, several $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are formed with acceptor N atoms of the azide moieties (Table 2). The interactions $\mathrm{N} 8-\mathrm{H} 8 B \cdots \mathrm{~N} 3$ and $\mathrm{N} 7-$ $\mathrm{H} 7 A \cdots \mathrm{~N} 6$ are formed to the terminal (non-coordinated) N atom of each azide moiety, with the $\mathrm{N}-\mathrm{H}$ vector in each case being close to collinear with the N_{3} axis. The interactions $\mathrm{N} 10-\mathrm{H} 10 A \cdots \mathrm{~N} 1$ and $\mathrm{N} 10-\mathrm{H} 10 B \cdots \mathrm{~N} 4$ are formed with acceptor N atoms bound directly to atom Co 1 . In these cases, the geometry at the N -atom acceptor is such that the inter-
action can be envisaged as involving a lone pair of electrons on an $s p^{2}$-hybridized N atom.

In the layers of picrate anions, the benzene rings lie approximately perpendicular to the layer planes, forming a herring-bone-type arrangement (Fig. 3). One NO_{2} group of

Figure 1
The molecular units in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.

Figure 2
A projection along [100], showing bilayers of $\left[\text { trans }-\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{+}$ cations and layers of picrate anions lying approximately in (004). $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are depicted as dashed lines in the central [trans$\left.\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{+}$bilayer and the acceptor atoms are labelled. Atoms N 1 , N 3 and N 4 are at the symmetry positions $\left(\frac{1}{2}-x, 1-y, \frac{1}{2}+z\right),\left(1-x, \frac{1}{2}+y\right.$, $\left.\frac{1}{2}-z\right)$ and $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$, respectively. H atoms bound to C atoms have been omitted for clarity.

Figure 3
A projection along [001] on to the plane of a single layer of picrate anions, showing the herring-bone-type arrangement.

Figure 4
Second-sphere hydrogen-bond interactions between the cationic and anionic moieties. [Symmetry code: (i) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.]
each anion lies approximately in the plane, and the $\mathrm{C}-\mathrm{O}^{-}$ bonds in adjacent molecules project alternately above and below the plane.

Of most interest from the perspective of anion-cation recognition is the arrangement of the second-sphere hydrogen-bond interactions at the interface between the picrate layers and the $\left[c i s-\operatorname{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{+}$bilayers. The edge of each picrate anion that contains the phenoxy O atom interacts with an $\mathrm{NH}_{2} \cdots \mathrm{NH}_{2}$ edge of an adjacent $\left[\text { cis- } \mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{+}$ cation, forming complementary sets of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds that are bifurcated at the $\mathrm{N}-\mathrm{H}$ donor (Table 2 and Fig. 4). The remaining NO_{2} group also interacts essentially with a single $\mathrm{NH}_{2} \cdots \mathrm{NH}_{2}$ edge, accepting $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds from $\mathrm{N} 7-\mathrm{H} 7$ that are bifurcated at the donor (Table 1 and Fig. 4). Atom O 4 of this nitrate group lies approximately along the bisector of the $\mathrm{H} 9 A-\mathrm{N} 9-\mathrm{H} 9 B$ angle, slightly displaced towards $\mathrm{H} 9 B$, so that it accepts $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds that are bifurcated at the acceptor.

Experimental

The complex salt $\left[\right.$ cis- $\left.\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{en})_{2}\right] \mathrm{NO}_{3}$ was prepared according to the literature method of Staples \& Tobe (1960). [cis-Co($\left.\mathrm{N}_{3}\right)_{2^{-}}$ $\left.(\mathrm{en})_{2}\right] \mathrm{NO}_{3}(1 \mathrm{~g}, 0.003 \mathrm{~mol})$ was dissolved in water $(100 \mathrm{ml})$ in a beaker. In a second beaker, $\mathrm{NaOH}(0.1362 \mathrm{~g}, 0.003 \mathrm{~mol})$ was dissolved in a minimum amount of water and picric acid $(0.7116 \mathrm{~g}$, 0.003 mol) was added. The two clear solutions were mixed and the resulting brown precipitate was filtered off and dried in air. This solid was dissolved in a 3:1 acetone-water mixture and slow evaporation at room temperature afforded red-black single crystals of (I) suitable for X-ray structure determination within one week. The complex salt (m.p. 453 K) is soluble in water and dimethyl sulfoxide, and fairly soluble in acetone. Elemental analysis found: Co 12.04, C 24.80 , H $3.82, \mathrm{~N} 37.25 \%$; calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{CoN}_{13} \mathrm{O}_{7}$: Co 12.00, C $24.42, \mathrm{H}$ 3.66, N 37.04%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)$	Mo $K \alpha$ radiation
$M_{r}=491.30$	Cell parameters from 6972
Orthorhombic, $P b c a$	\quad reflections
$a=9.1229(3) \AA$	$\theta=2.7-31.3^{\circ}$
$b=12.0980(5) \AA$	$\mu=1.02 \mathrm{~mm}^{-1}$
$c=32.8793(12) \AA$	$T=180(2) \mathrm{K}$
$V=3628.9(2) \AA^{3}$	Block, red-black
$Z=8$	$0.25 \times 0.25 \times 0.20 \mathrm{~mm}$
$D_{x}=1.799 \mathrm{Mg} \mathrm{m}^{-3}$	

[^0]
Data collection

Bruker Nonius X8 APEX-II CCD area-detector diffractometer
Thin-slice ω and φ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\text {min }}=0.703, T_{\text {max }}=0.822$
20066 measured reflections
4649 independent reflections
Refinement
Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0559 P)^{2} \\
&+4.5267 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.39 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.115$
$S=1.04$
4649 reflections
280 parameters
H -atom parameters constrained

3930 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=29.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-15 \rightarrow 13$
$l=-43 \rightarrow 44$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{N} 10$	$1.9560(18)$	$\mathrm{Co} 1-\mathrm{N} 4$	$1.9602(19)$
$\mathrm{Co} 1-\mathrm{N} 7$	$1.9594(19)$	$\mathrm{C} 1-\mathrm{N} 11$	$1.9613(18)$
$\mathrm{Co} 1-\mathrm{N} 8$	$1.9595(19)$	$\mathrm{Co} 1-\mathrm{N} 9$	$1.9779(17)$
N10-Co1-N7	$178.14(8)$	$\mathrm{N} 8-\mathrm{Co} 1-\mathrm{N} 1$	$90.76(8)$
$\mathrm{N} 10-\mathrm{Co} 1-\mathrm{N} 8$	$92.53(8)$	$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{N} 1$	$91.84(8)$
N7-Co1-N8	$85.68(9)$	$\mathrm{N} 10-\mathrm{Co} 1-\mathrm{N} 9$	$85.07(7)$
N10-Co1-N4	$91.83(8)$	$\mathrm{N} 7-\mathrm{Co} 1-\mathrm{N} 9$	$94.47(8)$
N7-Co1-N4	$89.93(8)$	$\mathrm{N} 8-\mathrm{Co} 1-\mathrm{N} 9$	$91.84(8)$
N8-Co1-N4	$174.78(8)$	$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{N} 9$	$85.68(8)$
N10-Co1-N1	$93.43(8)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 9$	$177.05(8)$
$\mathrm{N} 7-\mathrm{Co} 1-\mathrm{N} 1$	$87.11(8)$		

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N7-H7A \cdots N6 ${ }^{\text {i }}$	0.92	2.31	3.184 (3)	158
N7-H7B \cdots O $4^{\text {v }}$	0.92	2.48	3.312 (3)	151
N7-H7B $\cdots \mathrm{O}^{\text {v }}$	0.92	2.34	3.164 (3)	149
N8-H8A \cdots O1	0.92	2.16	2.948 (3)	143
$\mathrm{N} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2$	0.92	2.38	3.025 (3)	128
$\mathrm{N} 8-\mathrm{H} 8 B \cdots \mathrm{~N} 3^{\text {ii }}$	0.92	2.37	3.194 (3)	149
N9-H9A \cdots O1	0.92	2.02	2.839 (2)	148
N9-H9A \cdots O6	0.92	2.51	3.045 (3)	117
N9-H9B \cdots O $4^{\text {v }}$	0.92	2.41	2.897 (3)	113
$\mathrm{N} 10-\mathrm{H} 10 A \cdots \mathrm{~N} 1^{\text {iii }}$	0.92	2.37	3.248 (3)	161
$\mathrm{N} 10-\mathrm{H} 10 B \cdots \mathrm{~N} 4^{\text {iv }}$	0.92	2.66	3.336 (3)	131

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x,-y+1,-z$; (iii) $x+\frac{1}{2},-y+\frac{1}{2},-z$; (iv) $-x+\frac{1}{2}, y+\frac{1}{2}, z ;$ (v) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.

The largest peak in the difference density map lies in the vicinity of atom Co1. All H atoms were placed in calculated positions and allowed to ride during subsequent refinement, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{N}-\mathrm{H}=0.92 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: APEX2 (Bruker-Nonius, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

RS and RPS gratefully acknowledge the financial support of the UGC [grant No. F.12-38/2003(SR)]. ADB is grateful to the

metal-organic compounds

Danish Natural Science Research Council (SNF) and Carlsbergfondet (Denmark) for provision of the X-ray equipment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1132). Services for accessing these data are described at the back of the journal.

References

Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker-Nonius (2003). APEX2. Version 1.0-8. Bruker-Nonius BV, Delft, The Netherlands.
Kastner, M. E., Smith, D. A., Kuzmission, A. G., Cooper, J. N., Tyree, T. \& Yearick, M. (1989). Inorg. Chim. Acta, 158, 185-199.
Padmanabhan, V. M., Balasubramanian, R. \& Muralidharan, K. V. (1968). Acta Cryst. B24, 1638-1640.
Sharma, R. P., Sharma, R., Bala, R., Quiros, M. \& Salas, J. M. (2003). J. Coord. Chem. 56, 1581-1586.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Staples, P. J. \& Tobe, M. L. (1960). J. Chem. Soc. pp. 4812-4820.

[^0]: Mo $K \alpha$ radiation
 Cell parameters from 6972
 $=2.7-313^{\circ}$
 $\mu=1.02 \mathrm{~mm}^{-1}$
 $T=180$ (2) K
 Block, red-black $0.25 \times 0.25 \times 0.20 \mathrm{~mm}$

